Perspectives In Cell Physiology Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle

نویسنده

  • Chun Y. Seow
چکیده

Seow, Chun Y. Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle. Am J Physiol Cell Physiol 289: C1363–C1368, 2005; doi:10.1152/ajpcell.00329.2005.—A major development in smooth muscle research in recent years is the recognition that the myofilament lattice of the muscle is malleable. The malleability appears to stem from plastic rearrangement of contractile and cytoskeletal filaments in response to stress and strain exerted on the muscle cell, and it allows the muscle to adapt to a wide range of cell lengths and maintain optimal contractility. Although much is still poorly understood, we have begun to comprehend some of the basic mechanisms underlying the assembly and disassembly of contractile and cytoskeletal filaments in smooth muscle during the process of adaptation to large changes in cell geometry. One factor that likely facilitates the plastic length adaptation is the ability of myosin filaments to form and dissolve at the right place and the right time within the myofilament lattice. It is proposed herein that formation of myosin filaments in vivo is aided by the various filament-stabilizing proteins, such as caldesmon, and that the thick filament length is determined by the dimension of the actin filament lattice. It is still an open question as to how the dimension of the dynamic filament lattice is regulated. In light of the new perspective of malleable myofilament lattice in smooth muscle, the roles of many smooth muscle proteins could be assigned or reassigned in the context of plastic reorganization of the contractile apparatus and cytoskeleton.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle.

A major development in smooth muscle research in recent years is the recognition that the myofilament lattice of the muscle is malleable. The malleability appears to stem from plastic rearrangement of contractile and cytoskeletal filaments in response to stress and strain exerted on the muscle cell, and it allows the muscle to adapt to a wide range of cell lengths and maintain optimal contracti...

متن کامل

Influence of calcium on myosin thick filament formation in intact airway smooth muscle.

Myosin thick filaments have been shown to be structurally labile in intact smooth muscles. Although the mechanism of thick filament assembly/disassembly for purified myosins in solution has been well described, regulation of thick filament formation in intact muscle is still poorly understood. The present study investigates the effect of resting calcium level on thick filament maintenance in in...

متن کامل

Myosin thick filament lability induced by mechanical strain in airway smooth muscle.

Airway smooth muscle adapts to different lengths with functional changes that suggest plastic alterations in the filament lattice. To look for structural changes that might be associated with this plasticity, we studied the relationship between isometric force generation and myosin thick filament density in cell cross sections, measured by electron microscope, after length oscillations applied ...

متن کامل

The carboxyl-terminal isoforms of smooth muscle myosin heavy chain determine thick filament assembly properties

The alternatively spliced SM1 and SM2 smooth muscle myosin heavy chains differ at their respective carboxyl termini by 43 versus 9 unique amino acids. To determine whether these tailpieces affect filament assembly, SM1 and SM2 myosins, the rod region of these myosin isoforms, and a rod with no tailpiece (tailless), were expressed in Sf 9 cells. Paracrystals formed from SM1 and SM2 rod fragments...

متن کامل

Myosin light chain phosphorylation facilitates in vivo myosin filament reassembly after mechanical perturbation.

Phosphorylation of the 20-kDa regulatory myosin light chain (MLC) of smooth muscle is known to cause monomeric myosins in solution to self-assemble into thick filaments. The role of MLC phosphorylation in thick filament formation in intact muscle, however, is not clear. It is not known whether the phosphorylation is necessary to initiate thick filament assembly in vivo. Here we show, by using a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005